LINKAGES AMONG ACIDIC AND MERCURY DEPOSITION AND CLIMATE CHANGE IN ADIRONDACK ECOSYSTEMS

CHARLES DRISCOLL\(^1\), KIMBERLEY DRISCOLL\(^1\), KAREN ROY\(^2\), QINGTAO ZHOU\(^1\), AFSHIN POURMOKHTARIAN\(^1\), TIMOTHY SULLIVAN\(^3\), AND MYRON MITCHELL\(^4\)

\(^1\)SYRACUSE UNIVERSITY
\(^2\)NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION
\(^3\)E&S ENVIRONMENTAL CHEMISTRY
\(^4\)SUNY ESF
Outline

- Approach and pollutant interactions
- Recent trends in Adirondack deposition and lake chemistry
- Linkages with mercury
- Linkages with climate change
- Final thoughts
Lake Classes

- Seepage
- Drainage
 - Thin till
 - Medium till
 - Thick till
- Carbonate
Arbutus Lake – 48.2 ha
Climatic Data
- Solar radiation
- Precipitation
- Temperature

Atmospheric Chemistry
- Carbon dioxide
- Ozone

PnET
- Water balance
- Photosynthesis
- Living biomass
- Litterfall

Net Mineralization

BGC
- Aqueous reactions
- Surface reactions
 - Cation exchange
 - Adsorption
 - Humic binding
 - Aluminum dissolution/precipitation

Shallow water flow
- Weathering

Deep water flow
- BGC – Surface water
 - Aqueous reactions
Mercury Deposition

SO$_4^{2-}$, NO$_3^-$, H$^+$, Hg$^{2+}$

DOC, H$_2$SO$_4$, NO$_3^-$, H$_2$Al

Hg$^{2+}$, MeHg

Ca$^{2+}$, Al, H$_2$SO$_4$, NO$_3^-$, DOC

H+, ANC, Hg$^{2+}$

Ca$^{2+}$, Al, Hg$^{2+}$, MeHg

MeHg, Al, Hg$^{2+}$

SO$_4^{2-}$, NO$_3^-$, MeHg
Climate Drivers

- SO_4^{2-}, NO_3^-, H^+
- DOC, ANC
- Ca^{2+}, Al

Temperature
Precipitation
CO_2
TRENDS IN WET DEPOSITION
AND LAKE CHEMISTRY
48 Long Term Monitoring Lakes
1992-2008

Change (ueq/L-yr, umol/L-yr)

SO4 - n=47
NO3 - n=19
Ca - n=39
ANC - n=34
ALIM - n=35
HION - n=28
SO4 + NO3 - n=46
CB - n=29

Min - Mean - Max
48 Long Term Monitoring Lakes
1992-2008

Min - Mean - Max

DOC - n=22

Change (umol C/L-yr)
Change in pH

-0.04 -0.02 0.00 0.02 0.04 0.06

Change in DOC (umol/L-yr)

-10 -5 0 5 10 15 20 25

Change in pH

pH 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Change in DOC (umol/L-yr)
Cumulative Frequency Diagram for Ca (cmol$_c$/Kg)
Ca Normalized to C (Oa Horizon)

Cumulative Frequency Diagram for Exch. Al (cmol$_c$/Kg)
Exch. Al Normalized to C (Oa Horizon)
LINKAGES WITH MERCURY DEPOSITION
DOC (mg C L\(^{-1}\))

HBEF \(r^2 = 0.67\)
Sleepers River \(r^2 = 0.78\)
Beaver Meadow \(r^2 = 0.86\)
Lake Inlet \(r^2 = 0.92\)
$y = 6.67x^{-2.40}$
$r^2 = 0.49; P < 0.0001; n = 131$
LINKAGES WITH CLIMATE CHANGE
AOGCM
- Hadley (high sensitivity)
- GFDL (mid sensitivity)
- PCM (low sensitivity)

Low CO$_2$ = 550 ppm
High CO$_2$ = 970 ppm
at 2100
Stream Flow (HF-HadCM3)

Great Precipitation and Runoff, more uniform seasonal discharge

- Earlier Summer Discharge (Snowmelt)
- Later Snow pack Development

Ave. Monthly Flow (Cm)

Month

<table>
<thead>
<tr>
<th></th>
<th>1983-2000</th>
<th>2083-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Streamwater NO₃⁻
With CO$_2$ Fertilization
Acidification Recovery

- **Deposition**
 - Sulfate
 - Nitrate
 - Acidity

- **Forests**
 - Soil
 - Calcium
 - Sugar Maple
 - Red Spruce

- **Lakes**
 - Sulfate
 - Nitrate
 - ANC
 - DOC
 - Fish

Statuses:
- Strongly Recovering
- Moderately Recovering
- Uncertain
- Deteriorating
Final Thoughts

- NADP can play a critical role in assessing interactions among acidic and mercury deposition and climate change.

- Long-term meteorological, deposition and watershed data are essential for hypothesis generation and testing models.

- A key research need moving forward is evaluating the linkages between atmospheric and watershed models.
With special thanks to:

- New York State Energy Research and Development Authority (NYSERDA);
- New York State Department of Environmental Conservation (NYSDEC);
- Adirondack Lakes Survey Corporation (ALSC);
- US Environmental Protection Agency (US EPA);
- National Science Foundation (NSF); and
- USDA Forest Service - NSRC
Climate Projections (HWF)

<table>
<thead>
<tr>
<th></th>
<th>1970-1999</th>
<th>Mean Change 2070-2099</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCM B1</td>
<td>PCM A1</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>+1.4</td>
<td>+3.2</td>
</tr>
<tr>
<td>Annual Precipitation (cm)</td>
<td>101</td>
<td>+21.2</td>
</tr>
<tr>
<td>PAR (mmol m(^{-2}) s(^{-1}))</td>
<td>618</td>
<td>+21.0</td>
</tr>
</tbody>
</table>

Low CO\(_2\) = 550 ppm by 2100
High CO\(_2\) = 970 ppm by 2100
Current CO\(_2\) = 370 ppm
In 1800 CO\(_2\) = 280 ppm
Streamwater SO_4^{2-}