Site Identification

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Chassell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site ID</td>
<td>MI99</td>
</tr>
<tr>
<td>State</td>
<td>MI</td>
</tr>
<tr>
<td>County</td>
<td>Houghton</td>
</tr>
<tr>
<td>Operating Agency</td>
<td>NPS/Michigan Tech. University-GLARU</td>
</tr>
<tr>
<td>Sponsoring Agency</td>
<td>NPS</td>
</tr>
</tbody>
</table>

Sample Validity for Annual Period

<table>
<thead>
<tr>
<th></th>
<th>Annual*</th>
<th>Winter*</th>
<th>Spring</th>
<th>Summer</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples</td>
<td>46</td>
<td>42</td>
<td>40</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Valid Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with full chemistry**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid Samples</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>missing precipitation data</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First summary period day#</th>
<th>Annual*</th>
<th>Winter*</th>
<th>Spring</th>
<th>Summer</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/04/1983</td>
<td>11/30/1982</td>
<td>03/01/1983</td>
<td>05/31/1983</td>
<td>08/30/1983</td>
<td></td>
</tr>
<tr>
<td>Last summary period day</td>
<td>01/03/1984</td>
<td>02/22/1983</td>
<td>05/31/1983</td>
<td>08/30/1983</td>
<td>11/29/1983</td>
</tr>
<tr>
<td>Summary period duration</td>
<td>364</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Number of samples</td>
<td>46</td>
<td>2</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Measured precipitation (cm)</td>
<td>93.2</td>
<td>0.8</td>
<td>22.4</td>
<td>26.7</td>
<td>33.6</td>
</tr>
<tr>
<td>Valid samples with full chemistry**</td>
<td>40</td>
<td>2</td>
<td>11</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Valid field pH measurements</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

NADP/NTN Completeness Criteria

<table>
<thead>
<tr>
<th></th>
<th>Annual*</th>
<th>Winter*</th>
<th>Spring</th>
<th>Summer</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Summary period with valid samples (%)</td>
<td>81.0</td>
<td>15.4</td>
<td>93.4</td>
<td>76.9</td>
<td>100.0</td>
</tr>
<tr>
<td>2.Summary period with precip coverage (%)</td>
<td>86.8</td>
<td>15.4</td>
<td>93.4</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3.Measured precipitation with valid samples (%)</td>
<td>95.2</td>
<td>100.0</td>
<td>100.0</td>
<td>83.2</td>
<td>100.0</td>
</tr>
<tr>
<td>4.Collector efficiency (%)</td>
<td>92.4</td>
<td>60.3</td>
<td>91.4</td>
<td>102.2</td>
<td>100.4</td>
</tr>
<tr>
<td>Precip with full chemistry and valid field pH (%)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* = Data do not meet NADP/NTN Completeness Criteria for this period.
** = Valid samples for which all Laboratory Chemical measurements were made (The ONLY samples described by the percentile distributions in the Statistical Summary of Precipitation Chemistry for Valid Samples).
*** = Measured precipitation for sample periods during which precipitation occurred and for which complete valid laboratory chemistry data are available.
= Summary period start and end days do not correspond to the first or last sample day.
National Atmospheric Deposition Program/National Trends Network
1983 Annual & Seasonal Data Summary for Site MI99

Page 2: Statistical Summary of Precipitation Chemistry for Valid Samples

Precipitation-Weighted Mean Concentrations

<table>
<thead>
<tr>
<th></th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>NH₄</th>
<th>NO₃</th>
<th>Cl</th>
<th>SO₄</th>
<th>H(lab)</th>
<th>H(fld)</th>
<th>pH(lab)</th>
<th>pH(fld)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual*</td>
<td>0.19</td>
<td>0.034</td>
<td>0.039</td>
<td>0.069</td>
<td>0.30</td>
<td>1.07</td>
<td>0.10</td>
<td>1.63</td>
<td>2.15E-02</td>
<td>--</td>
<td>4.67</td>
<td>--</td>
</tr>
<tr>
<td>Winter*</td>
<td>0.53</td>
<td>0.079</td>
<td>0.274</td>
<td>1.735</td>
<td>0.83</td>
<td>3.57</td>
<td>0.93</td>
<td>2.81</td>
<td>2.51E-02</td>
<td>--</td>
<td>4.60</td>
<td>--</td>
</tr>
<tr>
<td>Spring</td>
<td>0.12</td>
<td>0.023</td>
<td>0.014</td>
<td>0.037</td>
<td>0.19</td>
<td>1.03</td>
<td>0.06</td>
<td>1.79</td>
<td>3.30E-02</td>
<td>--</td>
<td>4.48</td>
<td>--</td>
</tr>
<tr>
<td>Summer</td>
<td>0.29</td>
<td>0.054</td>
<td>0.090</td>
<td>0.041</td>
<td>0.46</td>
<td>1.25</td>
<td>0.11</td>
<td>1.73</td>
<td>1.69E-02</td>
<td>--</td>
<td>4.77</td>
<td>--</td>
</tr>
<tr>
<td>Fall</td>
<td>0.20</td>
<td>0.029</td>
<td>0.022</td>
<td>0.044</td>
<td>0.31</td>
<td>1.03</td>
<td>0.09</td>
<td>1.67</td>
<td>2.06E-02</td>
<td>--</td>
<td>4.69</td>
<td>--</td>
</tr>
</tbody>
</table>

Deposition

<table>
<thead>
<tr>
<th></th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>NH₄</th>
<th>NO₃</th>
<th>Cl</th>
<th>SO₄</th>
<th>H(lab)</th>
<th>H(fld)</th>
<th>pH(lab)</th>
<th>pH(fld)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual*</td>
<td>1.81</td>
<td>0.317</td>
<td>0.363</td>
<td>0.643</td>
<td>2.77</td>
<td>9.98</td>
<td>0.95</td>
<td>15.19</td>
<td>2.01E-01</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Winter*</td>
<td>0.04</td>
<td>0.006</td>
<td>0.022</td>
<td>0.137</td>
<td>0.07</td>
<td>0.28</td>
<td>0.07</td>
<td>0.22</td>
<td>1.98E-03</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Spring</td>
<td>0.28</td>
<td>0.051</td>
<td>0.031</td>
<td>0.083</td>
<td>0.43</td>
<td>2.30</td>
<td>0.14</td>
<td>4.01</td>
<td>7.38E-02</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Summer</td>
<td>0.78</td>
<td>0.144</td>
<td>0.240</td>
<td>0.109</td>
<td>1.22</td>
<td>3.32</td>
<td>0.28</td>
<td>4.62</td>
<td>4.52E-02</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fall</td>
<td>0.67</td>
<td>0.097</td>
<td>0.074</td>
<td>0.148</td>
<td>1.06</td>
<td>3.47</td>
<td>0.30</td>
<td>5.60</td>
<td>6.93E-02</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Weekly Sample Concentrations

<table>
<thead>
<tr>
<th></th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>NH₄</th>
<th>NO₃</th>
<th>Cl</th>
<th>SO₄</th>
<th>H(lab)</th>
<th>H(fld)</th>
<th>pH(lab)</th>
<th>pH(fld)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>0.02</td>
<td>0.006</td>
<td>0.005</td>
<td>0.007</td>
<td>0.02</td>
<td>0.33</td>
<td>0.02</td>
<td>0.41</td>
<td>3.55E-04</td>
<td>--</td>
<td>3.80</td>
<td>--</td>
</tr>
<tr>
<td>Percentile 10</td>
<td>0.06</td>
<td>0.011</td>
<td>0.009</td>
<td>0.023</td>
<td>0.02</td>
<td>0.44</td>
<td>0.06</td>
<td>0.67</td>
<td>8.83E-04</td>
<td>--</td>
<td>4.38</td>
<td>--</td>
</tr>
<tr>
<td>Percentile 25</td>
<td>0.09</td>
<td>0.018</td>
<td>0.015</td>
<td>0.032</td>
<td>0.09</td>
<td>0.64</td>
<td>0.08</td>
<td>0.83</td>
<td>4.81E-03</td>
<td>--</td>
<td>4.51</td>
<td>--</td>
</tr>
<tr>
<td>Percentile 50</td>
<td>0.21</td>
<td>0.041</td>
<td>0.033</td>
<td>0.067</td>
<td>0.19</td>
<td>1.03</td>
<td>0.12</td>
<td>1.43</td>
<td>1.25E-02</td>
<td>--</td>
<td>4.90</td>
<td>--</td>
</tr>
<tr>
<td>Percentile 75</td>
<td>0.44</td>
<td>0.078</td>
<td>0.087</td>
<td>0.213</td>
<td>0.47</td>
<td>1.72</td>
<td>0.22</td>
<td>2.83</td>
<td>3.07E-02</td>
<td>--</td>
<td>5.32</td>
<td>--</td>
</tr>
<tr>
<td>Percentile 90</td>
<td>0.77</td>
<td>0.180</td>
<td>0.235</td>
<td>0.465</td>
<td>1.12</td>
<td>3.13</td>
<td>0.36</td>
<td>4.11</td>
<td>4.13E-02</td>
<td>--</td>
<td>6.06</td>
<td>--</td>
</tr>
<tr>
<td>Maximum value</td>
<td>1.15</td>
<td>0.285</td>
<td>0.536</td>
<td>3.260</td>
<td>2.09</td>
<td>8.98</td>
<td>1.62</td>
<td>5.36</td>
<td>1.58E-01</td>
<td>--</td>
<td>6.45</td>
<td>--</td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>0.30</td>
<td>0.065</td>
<td>0.079</td>
<td>0.211</td>
<td>0.37</td>
<td>1.61</td>
<td>0.20</td>
<td>1.86</td>
<td>2.06E-02</td>
<td>--</td>
<td>4.69</td>
<td>--</td>
</tr>
<tr>
<td>Arith. std dev</td>
<td>0.28</td>
<td>0.067</td>
<td>0.121</td>
<td>0.519</td>
<td>0.45</td>
<td>1.77</td>
<td>0.27</td>
<td>1.32</td>
<td>2.68E-02</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Below detection</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Other Parameters

<table>
<thead>
<tr>
<th>Measured Precipitation cm</th>
<th>Conductivity uS/cm</th>
<th>Measured Precipitation cm</th>
<th>Conductivity uS/cm</th>
<th>Equivalence Ratios</th>
<th>SO₄ NO₃</th>
<th>SO₄+NO₃</th>
<th>H lab</th>
<th>Cation Anion</th>
<th>SO₄ NO₃</th>
<th>SO₄+NO₃</th>
<th>Cation Anion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>0.05</td>
<td>4.3</td>
<td>0.30</td>
<td>0.99</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentile 10</td>
<td>0.13</td>
<td>6.1</td>
<td>1.02</td>
<td>1.47</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentile 25</td>
<td>0.39</td>
<td>8.1</td>
<td>1.32</td>
<td>1.80</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentile 50</td>
<td>2.12</td>
<td>12.8</td>
<td>1.84</td>
<td>3.05</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentile 75</td>
<td>3.39</td>
<td>20.8</td>
<td>2.28</td>
<td>13.15</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentile 90</td>
<td>3.97</td>
<td>33.0</td>
<td>2.75</td>
<td>48.19</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum value</td>
<td>8.13</td>
<td>80.3</td>
<td>4.12</td>
<td>126.74</td>
<td>1.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annual and Seasonal Equivalence Ratios

- **Annual**: 1.97, 2.38, 1.01
- **Winter**: 1.02, 4.62, 1.31
- **Spring**: 2.26, 1.64, 0.96
- **Summer**: 1.80, 3.32, 1.11
- **Fall**: 2.08, 2.49, 0.98

Please see page 1 for footnotes.