<table>
<thead>
<tr>
<th>Site Identification</th>
<th>Sample Validity for Annual Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name</td>
<td>Indiana Dunes National Lakeshore</td>
</tr>
<tr>
<td>Site ID</td>
<td>IN34</td>
</tr>
<tr>
<td>State</td>
<td>IN</td>
</tr>
<tr>
<td>County</td>
<td>Porter</td>
</tr>
<tr>
<td>Operating Agency</td>
<td>NPS</td>
</tr>
<tr>
<td>Sponsoring Agency</td>
<td>NPS</td>
</tr>
<tr>
<td>Latitude</td>
<td>41:37:57</td>
</tr>
<tr>
<td>Longitude</td>
<td>87:05:16</td>
</tr>
<tr>
<td>Elevation</td>
<td>208 m</td>
</tr>
<tr>
<td>Number of samples</td>
<td>51</td>
</tr>
<tr>
<td>Valid Samples</td>
<td>47</td>
</tr>
<tr>
<td>with precipitation</td>
<td>45</td>
</tr>
<tr>
<td>with full chemistry**</td>
<td>45</td>
</tr>
<tr>
<td>without chemistry</td>
<td>0</td>
</tr>
<tr>
<td>without precipitation</td>
<td>2</td>
</tr>
<tr>
<td>Invalid Samples</td>
<td>4</td>
</tr>
<tr>
<td>with precipitation</td>
<td>4</td>
</tr>
<tr>
<td>missing precipitation data</td>
<td>0</td>
</tr>
</tbody>
</table>

Summary Period Information

<table>
<thead>
<tr>
<th></th>
<th>Annual</th>
<th>Winter</th>
<th>Spring*</th>
<th>Summer</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>First summary period day</td>
<td>12/30/1997</td>
<td>12/02/1997</td>
<td>03/03/1998</td>
<td>06/02/1998</td>
<td>09/02/1998</td>
</tr>
<tr>
<td>Summary period duration</td>
<td>364</td>
<td>91</td>
<td>91</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>Measured precipitation (cm)</td>
<td>97.9</td>
<td>17.5</td>
<td>30.7</td>
<td>29.6</td>
<td>16.7</td>
</tr>
<tr>
<td>Valid samples with full chemistry**</td>
<td>45</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Valid field pH measurements</td>
<td>24</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

NADP/NTN Completeness Criteria

<table>
<thead>
<tr>
<th></th>
<th>Annual</th>
<th>Winter</th>
<th>Spring*</th>
<th>Summer</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Summary period with valid samples (%)</td>
<td>91.8</td>
<td>92.3</td>
<td>84.6</td>
<td>92.4</td>
<td>93.3</td>
</tr>
<tr>
<td>2. Summary period with precip coverage (%)</td>
<td>98.1</td>
<td>92.3</td>
<td>100.0</td>
<td>92.4</td>
<td>100.0</td>
</tr>
<tr>
<td>3. Measured precipitation with valid samples (%)</td>
<td>91.0</td>
<td>100.0</td>
<td>74.3</td>
<td>100.0</td>
<td>95.4</td>
</tr>
<tr>
<td>4. Collector efficiency (%)</td>
<td>89.8</td>
<td>80.3</td>
<td>87.9</td>
<td>96.9</td>
<td>88.0</td>
</tr>
<tr>
<td>Precip with full chemistry and valid field pH (%)</td>
<td>53.0</td>
<td>23.8</td>
<td>37.2</td>
<td>79.5</td>
<td>47.2</td>
</tr>
</tbody>
</table>

* = Data do not meet NADP/NTN Completeness Criteria for this period.

** = Valid samples for which all Laboratory Chemical measurements were made (The ONLY samples described by the percentile distributions in the Statistical Summary of Precipitation Chemistry for Valid Samples).

*** = Measured precipitation for sample periods during which precipitation occurred and for which complete valid laboratory chemistry data are available.
1998 Annual & Seasonal Data Summary for Site IN34

Page 2: Statistical Summary of Precipitation Chemistry for Valid Samples

Precipitation-Weighted Mean Concentrations

<table>
<thead>
<tr>
<th></th>
<th>Ca (mg/L)</th>
<th>Mg (mg/L)</th>
<th>K (mg/L)</th>
<th>Na (mg/L)</th>
<th>NH₄ (mg/L)</th>
<th>NO₃ (mg/L)</th>
<th>Cl (mg/L)</th>
<th>SO₄ (mg/L)</th>
<th>H(lab) (pH)</th>
<th>H(fld) (pH)</th>
<th>pH(lab)</th>
<th>pH(fld)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>0.33</td>
<td>0.066</td>
<td>0.032</td>
<td>0.061</td>
<td>0.43</td>
<td>1.71</td>
<td>0.14</td>
<td>2.40</td>
<td>3.07E-02</td>
<td>2.51E-02</td>
<td>4.51</td>
<td>4.60</td>
</tr>
<tr>
<td>Winter</td>
<td>0.22</td>
<td>0.041</td>
<td>0.018</td>
<td>0.075</td>
<td>0.22</td>
<td>1.58</td>
<td>0.16</td>
<td>1.52</td>
<td>3.05E-02</td>
<td>2.47E-02</td>
<td>4.52</td>
<td>4.61</td>
</tr>
<tr>
<td>Spring</td>
<td>0.29</td>
<td>0.053</td>
<td>0.028</td>
<td>0.070</td>
<td>0.56</td>
<td>1.91</td>
<td>0.14</td>
<td>2.56</td>
<td>3.11E-02</td>
<td>2.74E-02</td>
<td>4.51</td>
<td>4.56</td>
</tr>
<tr>
<td>Summer</td>
<td>0.43</td>
<td>0.081</td>
<td>0.045</td>
<td>0.032</td>
<td>0.37</td>
<td>1.65</td>
<td>0.11</td>
<td>2.58</td>
<td>3.26E-02</td>
<td>2.31E-02</td>
<td>4.49</td>
<td>4.64</td>
</tr>
<tr>
<td>Fall</td>
<td>0.33</td>
<td>0.084</td>
<td>0.029</td>
<td>0.067</td>
<td>0.52</td>
<td>1.70</td>
<td>0.16</td>
<td>2.59</td>
<td>2.69E-02</td>
<td>2.52E-02</td>
<td>4.57</td>
<td>4.60</td>
</tr>
</tbody>
</table>

Deposition

<table>
<thead>
<tr>
<th></th>
<th>Ca (mg/L)</th>
<th>Mg (mg/L)</th>
<th>K (mg/L)</th>
<th>Na (mg/L)</th>
<th>NH₄ (mg/L)</th>
<th>NO₃ (mg/L)</th>
<th>Cl (mg/L)</th>
<th>SO₄ (mg/L)</th>
<th>H(lab) (pH)</th>
<th>H(fld) (pH)</th>
<th>pH(lab)</th>
<th>pH(fld)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>3.22</td>
<td>0.646</td>
<td>0.313</td>
<td>0.597</td>
<td>4.20</td>
<td>16.73</td>
<td>1.39</td>
<td>23.51</td>
<td>3.00E-01</td>
<td>2.46E-01</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Winter</td>
<td>0.39</td>
<td>0.072</td>
<td>0.031</td>
<td>0.131</td>
<td>0.38</td>
<td>2.76</td>
<td>0.28</td>
<td>2.65</td>
<td>5.32E-02</td>
<td>4.32E-02</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Spring</td>
<td>0.91</td>
<td>0.163</td>
<td>0.086</td>
<td>0.215</td>
<td>1.74</td>
<td>5.88</td>
<td>0.44</td>
<td>7.86</td>
<td>9.56E-02</td>
<td>8.41E-02</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Summer</td>
<td>1.26</td>
<td>0.240</td>
<td>0.133</td>
<td>0.095</td>
<td>1.09</td>
<td>4.88</td>
<td>0.32</td>
<td>7.64</td>
<td>9.65E-02</td>
<td>6.85E-02</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fall</td>
<td>0.54</td>
<td>0.140</td>
<td>0.048</td>
<td>0.112</td>
<td>0.86</td>
<td>2.84</td>
<td>0.27</td>
<td>4.34</td>
<td>4.50E-02</td>
<td>4.22E-02</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Weekly Sample Concentrations

<table>
<thead>
<tr>
<th></th>
<th>Ca (mg/L)</th>
<th>Mg (mg/L)</th>
<th>K (mg/L)</th>
<th>Na (mg/L)</th>
<th>NH₄ (mg/L)</th>
<th>NO₃ (mg/L)</th>
<th>Cl (mg/L)</th>
<th>SO₄ (mg/L)</th>
<th>H(lab) (pH)</th>
<th>H(fld) (pH)</th>
<th>pH(lab)</th>
<th>pH(fld)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.04</td>
<td>0.008</td>
<td>0.003</td>
<td>0.014</td>
<td>0.05</td>
<td>0.53</td>
<td>0.04</td>
<td>0.73</td>
<td>3.89E-04</td>
<td>2.45E-04</td>
<td>3.94</td>
<td>3.97</td>
</tr>
<tr>
<td>Percentile 10</td>
<td>0.10</td>
<td>0.019</td>
<td>0.010</td>
<td>0.017</td>
<td>0.13</td>
<td>0.93</td>
<td>0.06</td>
<td>1.06</td>
<td>2.44E-03</td>
<td>4.91E-03</td>
<td>4.18</td>
<td>4.16</td>
</tr>
<tr>
<td>Percentile 25</td>
<td>0.18</td>
<td>0.032</td>
<td>0.015</td>
<td>0.023</td>
<td>0.20</td>
<td>1.20</td>
<td>0.09</td>
<td>1.64</td>
<td>8.34E-03</td>
<td>8.91E-03</td>
<td>4.41</td>
<td>4.41</td>
</tr>
<tr>
<td>Percentile 50</td>
<td>0.31</td>
<td>0.060</td>
<td>0.029</td>
<td>0.062</td>
<td>0.38</td>
<td>1.81</td>
<td>0.14</td>
<td>2.59</td>
<td>2.75E-02</td>
<td>2.52E-02</td>
<td>4.56</td>
<td>4.60</td>
</tr>
<tr>
<td>Percentile 75</td>
<td>0.72</td>
<td>0.134</td>
<td>0.042</td>
<td>0.106</td>
<td>0.67</td>
<td>2.83</td>
<td>0.25</td>
<td>3.67</td>
<td>3.89E-02</td>
<td>3.89E-02</td>
<td>5.08</td>
<td>5.05</td>
</tr>
<tr>
<td>Percentile 90</td>
<td>1.43</td>
<td>0.254</td>
<td>0.083</td>
<td>0.163</td>
<td>0.87</td>
<td>4.26</td>
<td>0.35</td>
<td>4.66</td>
<td>6.61E-02</td>
<td>6.92E-02</td>
<td>5.62</td>
<td>5.31</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.64</td>
<td>0.356</td>
<td>0.375</td>
<td>0.267</td>
<td>1.87</td>
<td>7.03</td>
<td>0.63</td>
<td>8.04</td>
<td>1.15E-01</td>
<td>1.07E-01</td>
<td>6.41</td>
<td>6.61</td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>0.54</td>
<td>0.099</td>
<td>0.042</td>
<td>0.071</td>
<td>0.48</td>
<td>2.21</td>
<td>0.18</td>
<td>2.76</td>
<td>3.02E-02</td>
<td>3.04E-02</td>
<td>4.52</td>
<td>4.52</td>
</tr>
<tr>
<td>Arith. std dev</td>
<td>0.56</td>
<td>0.091</td>
<td>0.057</td>
<td>0.061</td>
<td>0.35</td>
<td>1.44</td>
<td>0.12</td>
<td>1.50</td>
<td>2.53E-02</td>
<td>2.57E-02</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Below detection</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Other Parameters

<table>
<thead>
<tr>
<th></th>
<th>Measured Precipitation*** cm</th>
<th>Conduc-tivity uS/cm</th>
<th>Equivalent Ratios</th>
<th>SO₄ NO₃</th>
<th>SO₄+NO₃ H</th>
<th>Cation Anion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>0.08</td>
<td>5.3</td>
<td>0.48</td>
<td>1.32</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Percentile 10</td>
<td>0.22</td>
<td>10.1</td>
<td>1.12</td>
<td>1.48</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Percentile 25</td>
<td>0.63</td>
<td>15.1</td>
<td>1.45</td>
<td>1.75</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Percentile 50</td>
<td>1.52</td>
<td>19.6</td>
<td>1.70</td>
<td>2.91</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Percentile 75</td>
<td>2.86</td>
<td>28.0</td>
<td>2.03</td>
<td>5.71</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Percentile 90</td>
<td>4.57</td>
<td>38.1</td>
<td>2.79</td>
<td>45.22</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Maximum value</td>
<td>8.26</td>
<td>76.0</td>
<td>3.80</td>
<td>349.77</td>
<td>1.62</td>
<td></td>
</tr>
</tbody>
</table>

Annual and Seasonal Equivalence Ratios

<table>
<thead>
<tr>
<th></th>
<th>SO₄ NO₃</th>
<th>SO₄+NO₃ H</th>
<th>Cation Anion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>1.82</td>
<td>2.53</td>
<td>0.98</td>
</tr>
<tr>
<td>Winter</td>
<td>1.24</td>
<td>1.87</td>
<td>0.98</td>
</tr>
<tr>
<td>Spring</td>
<td>1.73</td>
<td>2.70</td>
<td>0.97</td>
</tr>
<tr>
<td>Summer</td>
<td>2.02</td>
<td>2.46</td>
<td>1.00</td>
</tr>
<tr>
<td>Fall</td>
<td>1.97</td>
<td>3.03</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Please see page 1 for footnotes.