Measurement Techniques and Models for Ammonia Emissions At the Farm Level

Lowry A. Harper, Ph.D., P.E.
USDA-ARS
J.P. Campbell, Sr., Natural Resource Research Center
Watkinsville, GA
- Properties of gases.
 - Highly soluble.
 - \(\text{NH}_3 \)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Solubility (g/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_3)</td>
<td>89.9</td>
</tr>
<tr>
<td>(\text{H}_2\text{S})</td>
<td>0.66</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>0.003</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>0.003</td>
</tr>
<tr>
<td>(\text{N}_2\text{O})</td>
<td>0.26</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>0.34</td>
</tr>
</tbody>
</table>

* at 0°C
Properties of gases.

Highly soluble.

NH₃

Slightly soluble.

CH₄, N₂O, H₂S, N₂, etc.

Solubilities* in water

NH₃ -- 89.9 g/100 ml
H₂S -- 0.66 g/100 ml
N₂ -- 0.003 g/100 ml
CH₄ -- 0.003 g/100 ml
N₂O -- 0.26 g/100 ml
CO₂ -- 0.34 g/100 ml

*at 0°C
• Properties of gases.
 • Highly soluble.
 • NH₃
 • Slightly soluble.
 • CH₄, N₂O, H₂S, N₂, etc.
• Reactive gases.
 • NH₃, H₂S, PH₃

Solubilities* in water
NH₃ -- 89.9 g/100 ml
H₂S -- 0.66 g/100 ml
N₂ -- 0.003 g/100 ml
CH₄ -- 0.003 g/100 ml
N₂O -- 0.26 g/100 ml
CO₂ -- 0.34 g/100 ml
*at 0°C
• Properties of gases.
 • Ammonia properties.
 • Most abundant alkaline constituent in atmosphere.
• Properties of gases.
• Ammonia properties.
 • Most abundant alkaline constituent in atmosphere.
 • Can neutralize acid gases.
 • Acid/base gas neutralization.
 • Ammonium sulfate.
 • Ammonium nitrate.
• Properties of gases.
• Ammonia properties.
 • Most abundant alkaline constituent in atmosphere.
• Can neutralize acid gases.
 • Acid/base gas neutralization.
 • Ammonium sulfate.
 • Ammonium nitrate.
• On soil, oxidizes to NO_3 (removes an electron acting as promoting acidification).
Properties of gases.

Ammonia properties.

Most abundant alkaline constituent in atmosphere.

Can neutralize acid gases.

Acid/base gas neutralization.

Ammonium sulfate.

Ammonium nitrate.

On soil, oxidizes to NO_3 (removes an electron acting as promoting acidification).

Highly reactive.
Properties of gases.

Ammonia properties.

Most abundant alkaline constituent in atmosphere.
Can neutralize acid gases.

Acid/base gas neutralization.

Ammonium sulfate.
Ammonium nitrate.

On soil, oxidizes to NO$_3$ (removes an electron acting as promoting acidification).

Highly reactive.

Ubiquitous (every plant has an ammonia compensation point; >0 concentration will be maintained in the biosphere).
• Properties of gases.
• Ammonia properties.
• Properties of emissions.
 • Chemical properties:
 • $\text{NH}_4 \text{ concentration of the medium and the associated free NH}_3 \text{ in solution.}$
 • Hydrogen ion concentration (pH)

\[
p_{(\text{NH}_3)} = RT \left(10^{\frac{n_1 - n_2}{T}}\right) \left[\frac{\text{NH}_4^+}{H^+}\right]
\]
• Properties of gases.
• Ammonia properties
• Properties of emissions.
 • Chemical properties.
• Physical properties:
 • Solution temperature.

\[
p_{(NH_3)} = RT \left(10^{\frac{n_1-n_2}{T}} \right) \frac{[NH_4^+]}{H^+}
\]

\[
D_{NH_3} = n_1 \frac{T}{\exp\left(\frac{n_2}{T} - n_3\right)}
\]

Note: There was no significant difference in average daily windspeed.

Lagoon Water Temperature vs NH3 Flux Density

Rainfall Effects

Water Temperature (deg C) vs NH3 Flux Density (kg/ha/day)
• Properties of gases.
• Ammonia properties
• Properties of emissions.
 • Chemical properties.
• Physical properties:
 • Solution temperature.
 • Turbulence.
 • Decrease boundary layer.
 • Increase gradient.

Note: Water temperature varied less than 1.2 deg C.

Note: There was no significant difference in average daily windspeed.

Note: There was no significant difference in average daily windspeed.

Note: Water temperature varied less than 1.2 deg C.
• Measurement technologies.
 • Appropriate--non-interference.
 • Gradient techniques--Based on the concept of turbulent diffusion of gas along its mean concentration gradient.

\[F_{FG} = -K_g \left(\frac{\partial \rho_g}{\partial z} \right) \]
Measurement technologies.
- Appropriate--non-interference.
- Gradient techniques.
 - Aerodynamic (Momentum Balance) method
 - Valid only in neutral conditions so must be corrected for atmospheric stability.
 - Must be cautiously used over rough surfaces.
 - Relative ease in field measurements.
 - With corrections, valid 24 hours per day.
 - Determines representative emissions due to non-interference of atmospheric conditions.

\[
K_m = - \frac{k^2 \Delta u \Delta z}{\ln \left(\frac{z_2 - z_d}{z_1 - z_d} \right)} \left[\frac{z_2 - z_d}{z_1 - z_d} \right]^2 \Psi
\]
• Measurement technologies.
 • Appropriate—non-interference.
 • Gradient techniques.
 • Aerodynamic (Momentum Balance) method
 • Energy balance method
 • Physically based and no corrections necessary.
 • Requires large number of measurements.
 • Error may be large under low radiation periods.
 • Accurate and useful during daytime conditions.

\[R_n + G + \int_{z_1}^{z_2} \beta(z) dz + \ell k_{E(z)} \frac{\partial e}{\partial z} + c_p \rho k_{H(z)} \frac{\partial T}{\partial z} + \lambda k_{C(z)} \frac{\partial c}{\partial z} + M = 0 \]
• Measurement technologies.
 • Appropriate--non-interference.
 • Gradient techniques.
 • Aerodynamic (Momentum Balance) method
 • Energy balance method

• Cautions: Not useful in or around structures; however, may be used if the structures are *uniform in space* and turbulence has sufficient *profile development*.
• Measurement technologies.
 • Appropriate--non-interference.
 • Gradient techniques.
 • Mass-balance methods
 • Integrated horizontal flux (IHF).
 • Physically based.
 • Requires minimum fetch.
 • Instrumentation relatively simple.
 • Very useful for measuring field treatment effects.

\[F_{IHF} = \frac{1}{x} \int_{z_0}^{z_p} (u \rho_g + u' \rho_g') \, dz \]
• Measurement technologies.
 • Appropriate--non-interference.
 • Gradient techniques.
 • Mass-balance methods
 • Integrated horizontal flux (IHF).
 • Modified IHF.
 • Same principle as MMD.
 • Useful for variable sources and has minimal interference and/or stress on turbulence, crops, or animals.
 • Must be used in a general cross-wind direction.
• Measurement technologies.
 • Appropriate--non-interference.
 • Gradient techniques.
 • Mass-balance methods
 • Backward Lagrangian stochastic analysis (bLS).
 • Can determine a given source relationship from a measured concentration.
 • Generate ‘parcel’ trajectories backward in time and space and emission is inferred from touchdown.
 • Need only windspeed, wind direction, and stability plus coordinates of source and instrumentation.
 • Instrumentation simple, remote measurement, source can be any shape or size.
• **Measurement technologies.**
 • *bLS* works well, but—no ‘silver bullet’.

• Measurement technologies.
 • *bLS* works well, but—no ‘silver bullet’.
 • Inaccurate when accuracy of the MOST-based description of the atmosphere is suspect.

 • $|L| = 2$ m
 • $u_* = 0.15$ m sec$^{-1}$
Measurement technologies.

- *bLS* works well, but—no ‘silver bullet’.
- Inaccurate when accuracy of the MOST-based description of the atmosphere is suspect.
- Poor touchdowns.
• **Measurement technologies.**
 • *bLS* works well, but—no ‘silver bullet’.
 • Inaccurate when accuracy of the MOST-based description of the atmosphere is suspect.
 • **Poor touchdowns.**
 • Accuracies comparable.
 • ‘Ideal conditions’, ± 15-20%
 • Large-scale and spatial source complexity, ± 20-30%.
• Measurement technologies.
 • *bLS* works well, but—no ‘silver bullet’.
 • Inaccurate when accuracy of the MOST-based description of the atmosphere is suspect.
 • Poor touchdowns.
 • Accuracies comparable.
• Easy to use:
 • Single 3-D sonic anemometer.
• Measurement technologies.
 • bLS works well, but—no ‘silver bullet’.
 • Inaccurate when accuracy of the MOST-based description of the atmosphere is suspect.
 • Poor touchdowns
 • Accuracies comparable.
• Easy to use:
 • Single 3-D sonic anemometer.
 • Gas sensor.
• Measurement technologies.
 • Appropriate--non-interference.
 • Non-appropriate--interference.
 • Chambers.
 • May give higher emissions if gas-free air is supplied.
 • Destroys normal climatic characteristics.
 • Soluble and reactive gases will sorb and desorb on enclosure and tubing.
 (polyethylene<Teflon<glass<stainless steel<nylon).
 • Spatial variability high, large errors.
 • Useful only for relative and non-soluble gas comparisons.
• Measurement technologies.
 • Appropriate--non-interference.
 • Inappropriate--interference.
 • Non appropriate--other.
 • Gaussian plume/puff dispersion
 • Key parameters are standard deviation of the plume/puff spread in each direction, s_x, s_y, s_z.
 • Sigmas fitted empirically for each situation.
 • For most agricultural situations ($z<100m, x<1000m$), these models are unreliable.
 • In agricultural situations, Gaussian models should be used with a great deal of caution.
• Measurement technologies.
 • Appropriate—non-interference.
 • Non-appropriate—interference.
 • Non-appropriate—other.
 • Gaussian plume/puff dispersion.
 • Tracer gases.
 • A ratioing technique comparing known tracer emissions with unknown gas emissions.
 • Limitation that tracer may not simulate the emission source.
 • Limitation that vertical and horizontal distribution of tracer may be different from emission plume.
 • If tracer weight higher than unknown source (ex. SF$_6$), emission rates biased high.
• Problems with current flux data for modeling.
• Inappropriate measurement techniques.

Emissions from Similar Swine Lagoons

(Tracers*) (Micromet.**)
(kg/ha-day) (kg/ha-day)

Ammonia 5841 19
Methane 1227 42
Nitrous Oxide 201 ~0

* Eklund and LaCosse (1995), tracers.
• Problems with current flux data for modeling.
• Inappropriate measurement techniques.
• Different techniques give variable answers.

Comparison of lagoon emissions determined by different techniques on a swine production farm in North Carolina.

<table>
<thead>
<tr>
<th>Method</th>
<th>Season</th>
<th>Lagoon Emissions (kg NH$_3$-N/ha/day)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambers</td>
<td>Summer</td>
<td>57.8</td>
<td>Aneja et al. (1999)</td>
</tr>
<tr>
<td>Flux-gradient</td>
<td>Summer</td>
<td>26.7</td>
<td>Harper et al. (2001)</td>
</tr>
<tr>
<td>Gaussian model</td>
<td>Summer</td>
<td>42.3</td>
<td>McCulloch (1999)</td>
</tr>
<tr>
<td>Tracers</td>
<td>Summer</td>
<td>96.0</td>
<td>Todd et al. (2001)</td>
</tr>
</tbody>
</table>

Debatable as to the most nearly accurate emissions.
Comparison of measurement techniques.

Note: All components independently measured.

Fig. 1. Mass-balance of individually-measured nitrogen components in a North Carolina swine farm [after Harper et al. (2003)].
Comparison of measurement techniques*.

Note:

Use of emissions by chamber technique would give 10% more N emissions than N entering the farm.

Use of the Gaussian technique would give 7% more N emissions than N entering the farm.

Use of the tracer technique would give 20% more emissions than N entering the farm.

Note: Recently-completed studies (Harper et al., 2003) of three lagoons in Utah have shown similar emission rates — 8.3 vs. 7.5% emissions from swine finisher farms.
Available models for ammonia emissions from AFOs.

Statistical.

Harper et al., 2000 (Lagoons, Georgia only, 6 seasons)

Input: NH_4^+ concentration, lagoon pH, T_{water}, windspeed.

Input range limited to GA conditions (NH_4^+, 230-290 mg L$^{-1}$; pH, 7.4-8.0; T_{water}, 10-30°C; u, 160-470 cm sec$^{-1}$.

Fit, $R^2 = 0.94$

Calibrated on non-interference emissions measurement.
Available models for ammonia emissions from AFOs.

Statistical.

Harper et al., 2001 (Lagoons, Georgia only, 6 seasons)

Harper et al., 2003 (Lagoons, GA and NC, 12 seasons)

Input: NH_4^+ concentration, lagoon pH, T_{water}, windspeed.

Input range limited to Southeast U.S. conditions
(NH_4^+, 180-740 µg NH_4^+-N mL$^{-1}$; pH, 7.4-8.3; T_{water}, 6.1-29.5°C; u, 100-1000 cm sec$^{-1}$).

Fit, $R^2 = 0.78$

Calibrated on non-interference emissions measurement.
• Available models for ammonia emissions from AFOs.
 • Statistical.
 • Harper et al., 2001 (Lagoons, Georgia only, 6 seasons)
 • Harper et al., 2003 (Lagoons, GA and NC, 12 seasons)
 • Aneja et al., 2003 (Lagoons, NC, 4 seasons)
 • Input: T_{water} only
 • Input range limited to measured NC conditions and only to farms measured because of lack of other influences on emissions (no effect of turbulence, pH, and chemical concentration).
 • Fit to lagoons measured with ranges NH_4^+, 550-750 mg L$^{-1}$ and pH, 7.5-8.5, $R^2 = 0.82$.
 • Calibrated on chamber emissions measurement.
Available models for ammonia emissions from AFOs.

- Statistical.
 - Harper et al., 2001 (Lagoons, Georgia only, 6 seasons)
 - Harper et al., 2003 (Lagoons, GA and NC, 12 seasons)
 - Aneja et al., 2003 (Lagoons, NC, 4 seasons)
 - Harper et al., 2003 (Housing, NC, 4 seasons)
- Management (3) + climatic factors (2):
 - No geographical limitation.
 - Input: animal wt., 55-200 kg an\(^{-1}\); fan operation, 650-14,400 min day\(^{-1}\); \(\text{NH}_4^+\), 0.1-14.4 µg \(\text{NH}_4^+\)-N g\(^{-1}\); feed, 1.5-2.25 kg an\(^{-1}\) day\(^{-1}\); and \(T_{\text{water}}\), 15-29 °C.
 - Fit, \(R^2 = 0.97\).
 - Based on mass-balance measurements.
Available models for ammonia emissions from AFOs.

- Statistical.
 - Harper et al., 2001 (Lagoons, Georgia only, 6 seasons)
 - Harper et al., 2003 (Lagoons, GA and NC, 12 seasons)
 - Aneja et al., 2003 (Lagoons, NC, 4 seasons)
 - Harper et al., 2003 (Housing, NC, 4 seasons)

- Management (3) + climatic factors (2):
- Management (2) + climatic factors (1):
 - No geographical limitation.
 - Input: animal wt., 55-200 kg an\(^{-1}\); NH\(_4^+\), 0.1-14.4 \(\mu\)g NH\(_4^+\)-N g\(^{-1}\); feed, 1.5-2.25 kg an\(^{-1}\) day\(^{-1}\)
 - Fit, \(R^2 = 0.64\).
 - Based on mass-balance measurements.
• Available models for ammonia emissions from AFOs.
 • Statistical.
 • Harper et al., 2001 (Lagoons, Georgia only, 6 seasons)
 • Harper et al., 2003 (Lagoons, GA and NC, 12 seasons)
 • Aneja et al., 2003 (Lagoons, NC, 4 seasons)
 • Harper et al., 2003 (Housing, NC, 4 seasons)
 • Process.
 • De Visscher et al., 2002 (Lagoons)
 • Emissions from lagoons only.
 • Input: NH_4^+ concentration, lagoon pH, T_{water}, windspeed.
 • Fit, $R^2 = 0.7$ (no limitation on input ranges)
Available models for ammonia emissions from AFOs.

Statistical.
- Harper et al., 2001 (Lagoons, Georgia only, 6 seasons)
- Harper et al., 2003 (Lagoons, GA and NC, 12 seasons)
- Aneja et al., 2003 (Lagoons, NC, 4 seasons)
- Harper et al., 2003 (Housing, NC, 4 seasons)

Process.
- De Visscher et al., 2002 (Lagoons)
- Harper et al., 2004 (Housing)
 - Based on ration input, feed consumption, T_{water}, animal characteristics (size, type), T_{floor}, T_{ambient} - T_{house} differential, etc.
 - Will be tested on humid East and arid West locations.
 - In preparation.
Summary--How do we assure appropriate and reliable information for model development?

• Make sure that the most appropriate measurement technology was used (for ammonia, use of non-interference techniques should be required).
• Summary--How do we get appropriate and reliable information?
 • Use of the most appropriate measurement technology (use of non-interference techniques should be preferred in principle when possible).
 • Use of proper or more-sensitive analytical equipment.
• **Summary**--How do we get appropriate and reliable information?
 • Use of the most appropriate measurement technology (use of non-interference techniques should be preferred in principle when possible).
 • Use of proper or more-sensitive analytical equipment.
 • More integrated research (i.e. Systems’ Analysis or Life Cycle Analysis).
Summary--How do we get appropriate and reliable information?

- Use of the most appropriate measurement technology (use of non-interference techniques should be preferred in principle when possible).
- Use of proper or more-sensitive analytical equipment.
- More integrated research (i.e. Systems’ Analysis or Life Cycle Analysis).
- Long-term research (at least one to two years of three seasons each).
• Conclusion--correct and accurate models for emissions prediction require appropriate technologies and equipment for reliable verification data.
Southern Piedmont Conservation Research Unit
J. Phil Campbell, Sr., Natural Resource Conservation Center
Watkinsville, GA 30677

Research to protect natural resources and sustain agriculture in the Southern Piedmont and beyond.